
www.manaraa.com

1

STATE RESTORATION IN DISTRIBUTED SYSTEMS

Philip M. MERLIN
Department of Electrical Engineering

Technion - Israel institute of Technology
Haifa, Israel

Brian RANDELL
Computing Laboratory

The University of Newcast!e-upon-Tyne
Newcastle-upon-Tyne, England

ABSTRACT

This paper concerns an important aspect
of the problem of designing fault-tolerant
distributed computing systems. The concepts
involved in "backward error recovery", i.e.
restoring a system, or some part of a
system, to a previous state which it is
hoped or believed preceded the occurrence of
any existing errors are formalised, and
generalised so as to apply to concurrent,
e.g. distributed, systems. Since in
distributed systems there may exist a great
deal of independence between activities, the
system can be restored to a state that could
have existed rather than to a state that
actually existed.

The formalisation is based on the use of
what we term "Occurrence Graphs" to
represent the cause-effect relationships
that exist between the events that occur
when a system is operational, and to
indicate existing possibilities for state
restoration. A protocol is presented which
could be used in each of the nodes in a
distributed computing system in order to
provide system recoverability in the face
even of multiple faults.

1. INTRODUCTION

One important form of error recovery for
fault-tolerance involves restoring a system,
or some part of a system, to a previous
state which it is hoped or believed preceded
the occurrence of any existing errors,
before attempting to continue normal
processing,, Such backward error recovery

© 1978 IEEE. Personal use of this
material is permitted. However,
permission to reprint/republish this
material for advertising or promotional
purposes or for creating new collective
works for resale or redistribution to
servers or lists, or to reuse any
copyrighted component of this work in
other works must be obtained from the
IEEE.

[RAN77] is illustrated in Fig. 1, which
shows the history of a system which has
suffered from a number of state
restorations.

Fig. 1 - State restoration in a sequential
system. (Dashed lines represent abandoned
activity, dotted lines state restoration.)

However, this method of describing, and
illustrating, backward error recovery
disguises many of the problems that exist in
distributed computing systems (or in any
system involving concurrent activities) in
which the notion of "system state" (and for
that matter of "previous") is by no means
straightforward.

The present paper gives, in Section 2, a
formal model of system behaviour which
enables a precise definition to be given of
state restoration in concurrent computing
systems. A protocol is presented in Section
3 which could be used by each of the nodes
in a geographically distributed system in
order to provide system recoverability in
the face even of multiple faults. A proof of
the correctness of this protocol is
presented in [MER77a], together with a study
of such matters as the problem of state
restoration in the presence of contention
for shared resources and the problem of
reducing the amount of information about
past system activity that has to be
maintained for the useof such protocols.

2. DESCRIPTION OF THE MODEL

In this section we introduce the
Occurrence Graph model of the dynamic
behaviour of a concurrent system. Such

www.manaraa.com

2

graphs are similar to the Occurrence Nets
(also called Causal Nets) described in
[HOL68, PET76, PET77]. The main difference
is that Occurrence Graphs are viewed aa a
dynamic structure which is "generated" as
the system that it is modelling executes.
The Occurrence Graph also contains certain
additional features related specifically to
the problem of state restoration.

2.1 The Occurrence Graph Model

We introduce the model using an example.
Suppose that there exist files F1 and F2
(possibly at different locations) and a
terminal T. The terminal requests that
copies of the files be sent to a location
where they will be merged into a single file
F3, which replaces F1. A copy of F3 is also
kept at the merging location for possible
further use. Figure 2(a)represents initial
state of the system. In this model a
condition (indicating a state of, for
example, a given data structure,
communication line, register, etc.) is
represented by a "place", such places being
denoted graphically by circles. Place 1
represents the existence of file Fl, place 2
represents the existence of file F2 and
place 3 represents the fact that the
terminal is "ready to send" the requests.
(In Fig. 2 the names Fl, F2 and T are given
only for convenience and are not part of the
formal model.) The first event which takes
place is the sending of the requests by the
terminal. The result of this event is that
the previous condition of the terminal (e.g.
"ready to send") does not hold any longer,
and that two new conditions, representing
the requests to F1 and F2, are created. In
the model, the occurrence of an event is
denoted by a "bar". The new situation is
shown in Fig. 2(b), where bar 1 represents
the event of sending the requests, the input
arcs of the bar indicate which conditions
Were necessary to generate the occurrence of
the event (i.e. "caused" the event) and the
output arcs point to the conditions
resulting from this event. Bar 1 and its
associated arcs thus show the cause-effect
relationships between the occurrences of
conditions 3, 4 and 5.

Assuming that, at this level of
abstraction, copies of F1 and F2 can be
acquired independently, different bars as
shown in Fig. 2(c) will represent the
perhaps concurrent events of copying the
files. Bar 2 is generated by places 1 and 4,
and this event results in the continued
existence of the original file F1
(represented by place 6) and the sending of
a new copy of F1 (represented by place 7) to
the location where F1 and F2 will be merged.
Bar 3 takes a similar action with respect to
F2. Fig. 2(d) shows the entire Occurrence
Graph model of the history of the cause-
effect relationships between conditions and
events for the dynamics of the given
example. Bar 4 represents the merging of F1
and F2, and bar 5 the replacement of F1 by
F3. The final result is F2 (condition 9), F3
(condition 12) and another copy of F3
(condition 11), which may reside at
different, indeed possibly remote locations.

In this model, we represent each place as
influencing the occurrence of no more than a
single event. Thus we explicitly represent
those conditions which still hold after

Fig. 2 - The generation of an Occurrence
Graph

generating events, e.g. place 6 of of Fig.
2(c) represents the fact that although file
F1 (place 1) generates event 2, after the
occurrence of F2 this event the file is
still available and able to influence
further events. A similar relationship
exists between event 3 and places 2 and 9.
On the other hand, event 5 makes file F1
(place 6) unavailable while, and after,
being replaced by F3. Hence the only

www.manaraa.com

3

conditions which may generate new events are
those represented by places having no
outgoing arcs. Such conditions are called
active conditions, and are represented by
Active Places; in the graphic representation
these are, for convenience, indicated using
a black triangle. (In as much as it is
appropriate to refer to the instantaneous
"global state" of a distributed system, this
is what the set of active places
represents.)

In the Occurrence Graph, there is a
directed path between two places or bars if
and only if they are causally connected.
(Notice that events or conditions which are
not causally connected could have occurred
simultaneously.) By definition, when a new
bar is created, it may have outgoing arcs
only to new places representing conditions
which are generated by this bar. This
implies that Occurrence Graphs are acyclic
(i.e. they contain no directed loops)
meaning that no event or condition can be,
directly or indirectly, its own cause. The
progress made by a system or algorithm is
represented by the growth of the graph (in
our figures, towards the right-hand side of
the page).

Notice that the Occurrence Graph does not
represent algorithms (either hardware or
programs) but rather the actual occurrence
of events during execution and the pertinent
conditions which actually influence them.
The Occurrence Graph model is generated by
the progress of the algorithmic execution,
and from our point of view, many algorithms
may generate the same Occurrence Graph.
Depending on the actual timing of events,
and, presumably, on the values of input
data, a given algorithm may generate a
variety of Occurrence Graphs.

In the Occurrence Graph model, each event
is atomic. All conditions that are directly
influenced by an event are explicitly
connected to it by arcs and each condition
has at most one incoming arc and at most one
outgoing arc. The number of places and bars
in a graph is allowed to be infinite.
Similarly, there may be bars having an
infinite number of incoming and/or outgoing
arcs. There may also exist bars without
incoming or outgoing arcs, representing,
respectively, lack of causes or effects.

2.2 State Restoration

If an error is detected, a previous
consistent state of the system should be
restored at which it is possible to ignore
those events and conditions which originally
followed that state. By a "previous
consistent state", we mean a state the
system might have been in according to the
cause-effect relationships between events
and conditions, rather than one which had
actually existed before. If the restored
state is prior to the presumed set of events
and conditions (i.e. the fault or faults)
which caused the error, then the faults and
their consequences can thus be effectively
ignored.

State restoration is achieved by choosing
the state to be restored, reactivating
appropriate non-active conditions, and
deactivating appropriate active conditions.
The error detection, location of presumed

faults, and reactivation and deactivation of
conditions are performed by some "external
mechanism" which is not considered as part
of the system we model; we are only
concerned with the effects that such
mechanisms may have on the behaviour of the
normal system.

Restoration of a condition can be
achieved by the the "external mechanisms" in
different ways, e.g. having its original
value "checkpointed", recomputing its value
from related information provided by other
conditions,etc. At the level of abstraction
of the Occurrence Graph it only matters
whether or not a condition is restorable,
regardless of how such restoration can be
done. In the Occurrence Graph, a restorable
condition is represented by a restorable
place which is graphically denoted by a
double circle, as shown in Fig. 3. We assume
that if at a certain point in time a
condition is non-restorable it cannot become
restorable later. (In [MER77a] we generalise
to the case in which a restorable condition
can become temporarily non-restorable.)
Therefore, we assume that a single-circle
place cannot become a double-circle place.
The opposite is clearly possible, and it is
called a commitment [RAN77], such as occurs
when a checkpoint is discarded. A commitment
has no impact on the regular execution of
the system; it may only influence the
possible consistent states to which the
system can be restored.

The reactivation of a place can be
performed, provided that the place is
restorable and non-active. When a place is
reactivated we want to ignore previous
effects due to the place. This is
represented in the Occurrence Graph by
placing a black triangle in the place,
replacing its outgoing arc by a dashed arc,
and marking the bar to which it is connected
by that arc with an "*". Such a bar is
called an invalid bar - our aim is to make
it appear as if the event that it represents
had never occurred. We show later how a
subgraph including these invalid bars, and
also invalid places (to be defined below),
can be ignored without causing any
inconsistencies.

The "external mechanisms" should be able
to de-activate those conditions associated
with activities which are to be ignored as a
result of a state restoration. In the
Occurrence Graph, the deactivation of an
active place is represented by removing the
black triangle from the place. However, also
in this case, since a deactivation is
performed by an "external mechanism" it does
not correspond to the normal operation of
the system and, therefore the situation of
such a place is invalid. Hence, when a
deactivation is performed, the place is
marked as invalid by an "*".

In addition, any arbitrary sets of bars
and places can be declared to be invalid by
the "external mechanism" because of errors
they are presumed to have caused. Our main
goal is to find ways by which invalid places
and bars can be ignored without causing any
inconsistent behaviour by the system.

A component of an Occurrence Graph is a
subgraph having no outgoing arcs of any kind
to other subgraphs, and having no ordinary

www.manaraa.com

4

incoming arcs from other sub-graphs.
Incoming dashed arcs are permitted. Suppose
that a component includes neither restorable
nor active places. Such a component will
never have an active place and therefore it
will never be able to generate new bars.
Since there are no outgoing arcs, the
occurrence of the events and conditions of
the component has no effect on the state of
other parts of the system. Furthermore,
since all incoming arcs are dashed, all
places which are external to the component
and which generated bars of the component
have been reactivated afterwards. Therefore,
with respect to other parts of the system, a
component with neither restorable nor active
places appears as if it never has occurred.
Such a component is called an Ignorable
Activity. Ignorable Activities can be freely
deleted from the Occurrence Graph.

Fig. 3 - Atomic state restoration.

Suppose Fig. 3(a) is the Occurrence Graph
of Fig. 2(d) including the marking of a set
of restorable places. Since restorable marks
cannot be added we assume that they existed
initially. Suppose that an error is detected
which is presumed to have been caused by the
event represented by bar 5. Thus this bar is
declared to be invalid. Hence, we have to
find a way of producing an Ignorable
Activity that includes bar 5. This can be
done by deactivating places 11 and 12,
reactivating 6, 7 and 8, and committing 11.
The resulting Occurrence Graph is shown in
Fig. 3(b), in which places 11 and 12 are
invalid because they were deactivated, bar 5
is invalid by declaration and also because
of the reactivation of 6, and bar 4 is
invalid because of the reactivation of 7 and
8. The bars 4, 5 and the places 10, 11, 12
form an Ignorable Activity that includes all
the invalid elements, thus the system is
restored to a state it could have been in;
in fact this is the state that was shown in

Fig. 2(c). The Ignorable Activity can now be
deleted from the Occurrence Graph.

A Recoverable Activity of an Occurrence
Graph is a subgraph having no outgoing arcs
of any kind to other subgraphs, and which is
such that each incoming arc is either
dashed, or ordinary and coming directly from
a restorable place. This set of restorable
places is called the Recovery Line of the
Recoverable Activity. If all the places of a
Recovery Line are restored, the arcs
connecting the Recovery Line to the
corresponding Recoverable Activity become
dashed and the Recoverable Activity becomes
a Component of the Occurrence Graph. Such a
component can be turned into an Ignorable
Activity by deactivating all active places
and committing all restorable ones. Thus, a
Recoverable Activity is a viable candidate
for an Ignorable Activity, and in fact, only
Recoverable Activities can be converted into
Ignorable ones. Moreover all the bars which
are invalidated by the reactivation of the
Recovery Line, as well as the places which
are invalidated by the deactivation of
active places, will be included in the
Ignorable Activity.

The construction of an Ignorable Activity
is as simple as described above only when
one can assume that the reactivation of the
Recovery Line, the deactivation of active
places and the commitment of restorable
places can all be done atomically, i.e. when
it can be assumed that there are no other
changes in the Occurrence Graph while these
operations are performed. The more complex
case (and more realistic in many practical
situations) where such an assumption cannot
be made is discussed in Sec. 2.3.

We conclude this subsection by showing
the two additional state restorations that
can be performed in the system of Fig. 3(a).
If the places l,2 and 3 are chosen as a
Recovery Line and the rest of the graph is
transformed into an Ignorable Activity, the
system will be restored to the consistent
state shown in Fig. 2(a). If the entire
Occurrence Graph of Fig. 3(a) is considered
a Recoverable Activity which is converted
into an Ignorable Activity, then the entire
graph will be ignored. Notice that any
system can by definition be "restored" to
such a consistent (albeit vacuous) state.

2.3 Decentralised State Restoration

State restoration involves the choice of
a Recovery Line, the deactivation of each
active place and the commitment of each
restorable place of the corresponding
Recoverable Activity, and the reactivation
of each of the places of the Recovery Line.
In many concurrent, and in particular
distributed, systems it is not efficient or,
in practice, even possible to perform all
these operations atomically, i.e. assuming
that other parts of the graph do not change
while the operations are being performed. In
such cases, each reactivation, each
commitment and each deactivation is
performed separately, and should all be co-
ordinated in such a way as to ensure that,
in spite of the possible changes which may
occur in the graph between operations, the
state restoration will be properly
completed.

www.manaraa.com

5

We illustrate the type of problems which
may arise while performing decentralised
state restoration by the following example.
Suppose that in the example of Fig. 3(a) bar
5 is declared invalid, and a state
restoration such as was described in the
previous subsection is initiated. Assuming
that each restoration, each reactivation,
and each commitment is performed
independently, a possible intermediate state
of the Occurrence Graph is shown in Fig.
4(a). This corresponds to the situation
after the reactivation of place 6 and the
deactivation of place 12. In this state,
places 7 and 8 form a Recovery Line. To
complete the restoration we need to
reactivate them, and to deactivate and
commit place 11. However, if in the meantime
place 8 is committed then it cannot be
reactivated and that restoration cannot be
completed. Nevertheless, it is still
possible to restore the system, albeit to
the consistent state defined by the Recovery
Line of places 1, 2 and 3. The resulting
Occurrence Graph after such restoration is
shown in Fig. 4(b). In this case, place 6
had to be deactivated in spite of the fact
that it was reactivated as part of the state
restoration, This would not be necessary if,
for example, in Fig. 4(a) place 5 was
restorable. In such circumstances it would
be possible to restore the state of the
system by choosing places 2 and 5 as a
Recovery Line.

A Recovery Line may be lost not only by
commitment of one of its members but also by
the generation of new bars. For example, in
Fig. 4(a) a new bar involving places 9 and
11 can be generated, as shown in Fig. 4(c),
in which case places 7 and 8 no longer form
a Recovery Line. (Such an occurrence is
termed an "interaction commitment" in
[RAN77].) More subtle situations could
appear if the reactivated places generate
new bars, possibly in conjunction with
places which are from a Recoverable Activity
in the process of restoration and are about
to be deactivated.

Since in decentralised systems, there may
be no central authority able to observe the
entire Occurrence Graph, such an apparently
simple task as that of determining a
Recovery Line could be impossible, because
while observing one part of the graph other
parts may change. Section 3 describes a
protocol which guarantees consistent state
restoration in such a distributed system
where arbitrarily many faults can be
detected at different times in different
parts of the system. The protocol also
ensures that not only those elements which
are declared invalid because of presumed
faults, but also those elements which are
invalidated by deactivation or reactivation
operations, will ultimately be included in
Ignorable Activities. The reader interested
in a more formal discussion of Occurrence
Graphs, of properties of such graphs, and of
Recovery using Occurrence Graphs is referred
to [MER77a].

3. A DECENTRALISED RECOVERY MECHANISM
THE "CHASE PROTOCOLS"

In this section we demonstrate the use of
the Occurrence Graph model by discussing a
protocol which guarantees consistent state
restoration in decentralized systems.

Fig. 4 - Decentralised State Restoration

Suppose a system ie composed of a finite
set of nodes communicating by means of
messages through a set of prescribed virtual
links connecting them. Such a system could
be apacket switching network, a distributed
application, or any other system where only
message communications permitted. In such a
case there is no central means of performing
atomic state restoration, and a
decentralised recovery mechanism is
required.

A node may send messages only to the
nodes to which it is directly connected by a
virtual link. Clearly, we abstract ourselves
from the physical links, i.e. the virtual
links could be provided by a lower level
protocol. Each node can generate messages
"spontaneously", or as a result of receiving
messages. The dynamics of such a system can
be modelled by an Occurrence Graph in which
places represent messages and bars the
generation of these messages. Copies of
messages could be retained for recovery
purposes, in which case the corresponding
places will be marked as restorable. We

www.manaraa.com

6

assume that each node "remembers" that part
of the history (i.e. the Occurrence Graph)
which relates to it, and thus that between
them the nodes "remember" the structure of
the whole history but only the content of
those messages explicitly marked as
restorable.

3.1 Description of the Protocols

The system can freely generate new bars
and places and commit restorable places, but
the deactivation of active places and the
reactivation of restorable non-active places
are completely controlled by the recovery
protocols that are described below. The
protocol is independently performed for each
bar and for each place. As described later,
each protocol can be in either of two
states, called the LIVE state and the DEAD
state. The protocol for each bar or place
can communicate with the protocols for those
places or bars having incoming or outgoing
arcs to it by sending and receiving a
special message called FAIL. For simplicity
of presentation, we will say that a bar or a
place performs an action of its protocol
(e.g. enters the DEAD state, sends a FAIL
message, etc.) meaning by this that the
mechanism that implements the protocol for
that bar or place performs that action. We
will first present the protocol informally,
then give a formal definition.

Recovery is initiated when a bar or place
is declared invalid as a result of a
presumed fault, Obviously, such recovery can
also be started when other recovery
activities are already in progress in other
elements of the Occurrence Graph. Initially,
when a bar or place is created it is placed
in the LIVE state. As described below in
further detail, a bar or place declared
invalid will become DEAD, and the DEAD state
will propagate in all directions through the
arcs of the Occurrence Graph by means of
FAIL messages. This propagation stops when
all the elements of the minimal Recoverable
Activity that includes the invalid element
are DEAD. The protocols guarantee that each
DEAD place is neither active nor restorable,
and that all the places which, though not
included in the Recoverable Activity, have
an ordinary outgoing arc to a bar of that
Activity will be reactivated and the arc
will be dashed. Thus each invalid element,
together with all the DEAD elements caused
by it, will become an Ignorable Activity.
This guarantees recovery.

None of the operations performed on the
graph (i.e. GENERATE, COMMIT, REACTIVATE,
DEACTIVATE, INVALIDATE) can reduce the size
of the minimal Recoverable Activity that
includes a given element, In fact, the
GENERATE, COMMIT and REACTIVATE operations
can cause the size of the Activity to
increase. Illustrations of this were given
in Section 2.3, where the size of the
minimal Recoverable Activity was shown to
increase because a place of its Recovery
Line is committed, and because the
generation of a new bar nullifies the
Recovery Line. There is also the simple
possibility of growth by adding bars and
places to a Recoverable Activity without
changing the Recovery Line.

As mentioned above, the DEAD state is
propagated by sending FAIL messages. Whilst

this propagation is in progress, the minimal
Recoverable Activity can grow because of
operations performed on the graph. In such a
case the DEAD state will propagate to the
new (i.e. larger) minimal Recoverable
Activity. Therefore, the propagation of the
DEAD state could be "chasing" the growth of
the minimal Recoverable Activity. In order
to guarantee completion, it has to be
assumed that the propagation will catch up
the growth. There are many ways by which
this can be guaranteed, such as giving
higher priorities to FAIL messages than to
ordinary messages, bounding the number of
ordinary messages the system can produce, or
limiting their rate of production. We
consider these mechanisms to be outside the
scope of this paper, and we simply assume
that the "chasing" will be successfully
completed.

The propagation of the DEAD state from
invalid elements having disjoint minimal
Recoverable Activities is performed
independently, and the state restoration of
one does not affect the others. If several
invalid elements have the same minimal
Recoverable Activity, there is no effect on
the propagation, except that now the
propagation is started concurrently at
several elements. If two elements have
overlapping minimal Recoverable Activities,
at least one of the elements will eventually
have a minimal Recoverable Activity which
encompasses the union of their minimal
Recoverable Activities; ultimately state
restoration will be consistently completed
for this union. Similar comments apply to
the situations which can arise if a minimal
Recoverable Activity having invalid elements
is enlarged (e.g. by a COMMIT or a GENERATE
operation) with a subgraph which already
includes invalid elements.

The protocol that each bar and each place
executes is the following: If a LIVE bar is
invalidated or if it receives a FAIL
message, the bar will be placed in the DEAD
state and FAIL messages will be sent to all
places having incoming or outgoing arcs to
this bar. If a LIVE place is invalidated, if
such a place receives a FAIL message from
its incoming arc (i.e. the event that caused
it), or if it receives a FAIL message from
an ordinary outgoing arc (i.e. one of the
events that it caused) while being non-
restorable, then FAIL messages will be sent
by the place through all of its arcs
independently of their direction, and the
place will be left non-active, non-
restorable and set to DEAD. If a LIVE
restorable place receives a FAIL message
from an ordinary outgoing arc, the place
will remain LIVE and will be reactivated.
Invalidations of bars or places in the DEAD
state, as well as FAIL messages received by
such bars or places are ignored.

The protocols for an arbitrary bar b and
place p are summarised in Fig. 5 using a
notation similar to those used in [BOC76]
and [MER77b]. In this notation there is a
finite state machine for each bar b and for
each place p. Transition T1 is executed
atomically by a 'b’ machine whenever the
medicate CONDITION1 is satisfied by b, and
during the transition ACTION1 is performed.
The transitions of a 'p' machine are
executed in a similar way.

www.manaraa.com

7

Tl: CONDITION: (b is declared INVALID)
OR (b RECEIVES FAIL message).

ACTIONI: SEND FAIL through all arcs of
b, independently of their
direction.

T2: CONDITION2: (p is declared
INVALID) OR (p RECEIVES FAIL from
incoming arc) OR (p RECEIVES FAIL
from ordinary outging arc AND p is
not restorable).

ACTION2: IF p is active THEN
DEACTIVATE(p); IF p is restorable
THEN COMMIT(p); SEND FAIL message
through all arcs of p,
independently of their direction.

T3: CONDITION: (p RECEIVES FAIL
message from ordinary outgoing arc)
AND (p is restorable).

ACTION3: REACTIVATE(p)

Fig. 5 - The "Chase" Protocol.

We assume that every FAIL message arrives
at its destination within a finite, though
arbitrarily long, time after it is sent. We
assume also that FAIL messages, as well as
notifications of invalidation, are received
sequentially by the protocols (e.g. by
queueing). This ensures that no more than
one transition can be executed at each place
at any given time. In [MRR77a] a formal
validation of the protocol is given together
with a discussion of several improvements
which can be made in the protocol.

4. CONCLUDING REMARKS

The ideas and techniques presented in
this paper provide a basic model which can
be either directly implemented or used as a
reference for validation of other backward
error recovery mechanisms for concurrent
systems. However, much further work remains
to be done.

In practical systems one could for
example, expect the design of recovery
protocols to take into account the planned
constraints on information flow between
entities of the system (e.g. using
"conversations" [RAN75], rather than depend
totally on such records as can be provided
of the history of actual information flow.
Such constraints result in a-priori
knowledge of properties that the Occurrence
Graphs of a particular system will possess,
and which can be used to design more
efficient protocols. Further study of
practical constraints that will result in
improved recovery protocols without unduly
compromising system performance under normal
conditions is clearly needed.

In many cases backward error recovery
will be infeasible or insufficient, and some
form of forward error recovery will be
needed - this would involve the notion of
"compensation" [BJ072, DAV77], i.e. the
sending of additional corrective information
to an entity which has previously received
erroneous information, instead of requiring
that the entity perform state restoration.
Such strategies will involve considerations
of the semantics associated with Occurrence

Graphs, as well as their syntactic
structure.

5. REFERENCES

[BJ072] L.A. Bjork, C.T. Davies, "The
Semantics of the Preservation and
Recovery of Integrity in a Data
System", TR 02.540, IBM, San Jose,
Cal., 1972.

[BOC76] G.V. Bochman, J. Gecsei, "A Unified
Method for the Specification and
Verification of Protocols" Pub. #247,
Dept. d’Informatique, Univ. of
Montreal, 1976.

[DAV77] C.T. Davis, "Data Base Spheres of
Control", TR 02.782, IBM, San Jose,
Cal. 1977.

[HOL68] A.W. Holt, R.M. Shapiro, H. Saint,
S. Marshall, "Information System
Theory Project", Appl. Data Research
ADR 6606 (US Air Force, Rome Air
Development Center RADC-TR-68-305),
1968.

[L0M77] D.B. Lomet, "Process Structuring,
Synchronisation and Recovery using
Atomic Actions", Proc. ACM Conf. on
Language Design for Reliable Software.
Sigplan Notices 12, 3, 128-137, 1977.

[MER77a]P.M.Merlin, B. Randell, "Consistent
State Restoration in Distributed
Systems", TR 113, Computing Lab.,
Univ. of Newcastle-on-Tyne, UK, 1977.

[MRR77b]P.M.Merlin, A. Segal, "A Failsafe
Loop-Free Algorithm for Distributed
Routing in Data Communication
Networks", Pub. 313, Dept. of Electr.
Eng., Technion, Haifa, Israel, 1977.

[PET76] C.A. Petri, "Nichtsequentielle
Prozesse", Rt. 76-6, GMD-ISF, Bonn, W.
Germany, 1976.

[PET77] C.A. Petri, "General Net Theory",
Proc. of the Joint IBM/Univ. of
Newcastle-upon-Tyne Seminar on
Computing System Design (B. Shaw,
Ed.); Comp. Lab., Univ. of Newcastle-
upon-Tyne, U.K., 1977, pp. 131-169.

[RAN75] B. Randell, "System Structure for
Software Fault Tolerance", IEEE Trans.
on Software Eng SE-1, 2, pp. 220-232,
1975.

[RAN77] B. Randell, P.A. Lee, P.C.
Treleaven, "Reliable Computing
Systems", TR 102, Comp. Lab., Univ. of
Newcastle-upon-Tyne, U.K., 1977.

6. Acknowledgement

Development of the ideas contained in
this paper has been greatly aided by
discussions with numerous colleagues in the
Computing Lab. of the Univ. of Newcastle-
upon-Tyne, particularly with Eike Best.
Acknowledgements are also due to the UK
Science Research Council for their financial
support of this research.

